منابع مشابه
Longitudinal Functional Data Analysis.
We consider dependent functional data that are correlated because of a longitudinal-based design: each subject is observed at repeated times and at each time a functional observation (curve) is recorded. We propose a novel parsimonious modeling framework for repeatedly observed functional observations that allows to extract low dimensional features. The proposed methodology accounts for the lon...
متن کاملFunctional data analysis view of functional near infrared spectroscopy data.
Functional near infrared spectroscopy (fNIRS) is a powerful tool for the study of oxygenation and hemodynamics of living tissues. Despite the continuous nature of the processes generating the data, analysis of fNIRS data has been limited to discrete-time methods. We propose a technique, namely functional data analysis (fDA), that converts discrete samples to continuous curves. We used fNIRS dat...
متن کاملFunctional Data Analysis for Sparse Auction Data
Bid arrivals of eBay auctions often exhibit “bid sniping”, a phenomenon where “snipers” place their bids at the last moments of an auction. This is one reason why bid histories for eBay auctions tend to have sparse data in the middle and denser data both in the beginning and at the end of the auction. Time spacing of the bids is thus irregular and sparse. For nearly identical products that are ...
متن کاملFunctional Data Analysis of Tree Data Objects.
Data analysis on non-Euclidean spaces, such as tree spaces, can be challenging. The main contribution of this paper is establishment of a connection between tree data spaces and the well developed area of Functional Data Analysis (FDA), where the data objects are curves. This connection comes through two tree representation approaches, the Dyck path representation and the branch length represen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annual Review of Statistics and Its Application
سال: 2016
ISSN: 2326-8298,2326-831X
DOI: 10.1146/annurev-statistics-041715-033624